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A scaling analysis of conductance for photons in two dimensions is carried out and, contrary to widely held
belief, we find strong evidence of a mobility edge. Such behavior is compatible with the existence of an
Anderson transition for electronic systems under symplectic symmetry, and indeed we show that the transfer
matrix in the photonic system we have modelled has such a symmetry. We verify single parameter scaling of
the conductance and demonstrate the transition from the metallic phase to localization. Key parameters,
including the critical disorder, the conductance, and the critical exponent of the localization length are calcu-
lated, and it is shown that the value of the critical exponent is similar to that for electronic systems with
symplectic symmetry.
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The phenomenological scaling theory of Anderson local-
ization, based on the principles of renormalization �1�, was
the first general approach to the analysis of localization. Ac-
cording to this theory, all states are localized for dimensions
d�2, while for higher dimensions d�2 there exists a mo-
bility edge—the transition from diffusive propagation to lo-
calization. The derivation of this prediction assumes a sys-
tem with noninteracting electrons in which the transfer
matrix or Hamiltonian exhibits orthogonal symmetry. How-
ever, taking into account electron interactions it is possible to
predict an Anderson transition even in two dimensions �2,3�.
Other cases in which an Anderson transition is possible in
two dimensions are in quantum Hall effect systems �4�, in
systems with symplectic symmetry in which the spin rotation
symmetry is broken �5�, in systems which exhibit anisotropic
disorder �6,7�, and even in systems in which electron inter-
action is weak �8�. The predictions of scaling theory in the
tight binding approximation for systems with orthogonal
symmetry were first tested numerically in work by Pichard et
al. �9� and by McKinnon and Kramer �10–12�. The symplec-
tic case of spin-orbit coupling was first considered in Refs.
�13–15�, and more recently in Refs. �16–19� for two-
dimensional �2D� systems with a tight-binding Hamiltonian,
and also for a model of a random network �20,21�. In three
dimensions, the case for symplectic symmetry was consid-
ered �22�, while the possibility of a mobility edge for dimen-
sions d�2 was also predicted �23�. Despite substantial re-
search to date, there has been no corresponding treatment for
photons based on a renormalization group analysis and, ac-
cordingly, in this paper we aim to address this shortcoming.
We carry out our analysis using a model which provides a
realistic and rigorous solution of multiple scattering, and
which allows for verification by experiment. Our simulations
use an exact method based on multipole field expansions,
rigorously providing for all scattering orders �24�. We con-
sider a 2D, disordered sample of Fig. 1 which we model
using a supercell approach �15,21,25�. Each row of the struc-
ture is a cylinder grating, the supercell of which has period D
and comprises L infinite cylinders aligned with the z axis, the
centers of which are located at x=cj, and periodic replicates

of these. Although the cylinder positions cj, radii aj, and
refractive indices nj may be disordered, here we randomize
only the refractive indices, taking the cylinders to be equally
spaced �center-center separation d=D /L�, of common radius
a /d, and embedded in free space. The disorder is quantified
by Q, with the nj being uniformly distributed in the interval
�n−Q ,n+Q�. A slab of the photonic crystal is formed by
vertically stacking L different gratings as shown in Fig. 1 and
we illuminate this from above with TM �E�� polarized plane
waves of wavelength �, incident at some arbitrary angle.

The sample is characterized by the dimensionless conduc-
tance g—the primary parameter of scaling theory �1�—given
by the generalized two-terminal Landauer formula �26,27�
for multichannel propagation

g = �
p

�
q

�Tpq�2 = Tr TT†. �1�

Here, Tpq is the coefficient of transmission into plane wave
channel p for unit amplitude input in channel q, with the
summations taken over all propagating channels. The propa-
gating channels in Eq. �1� are the grating orders in this case.
The plane wave transmission �Tl� and reflection �Rl� scatter-
ing matrices for each grating layer, computed using a multi-

FIG. 1. Geometry of the problem for five cylinders per unit
cell.
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pole treatment �24�, are coupled together using recurrence
relations to yield the transmission and reflection matrices
�T ,R� for the L layer slab. Since the theory includes all
scattering orders, these matrices are of infinite dimension and
must be truncated in computational use. Even though the
calculation of g �Eq. �1�� requires only propagating states,
the recursion that yields R and T requires that all propagating
orders and a sufficient number of evanescent orders �Nt in
total� be included to achieve a well converged solution accu-
rately characterizing g �28�.

In electronic systems, the transport properties are gov-
erned by the symmetry class of the transfer matrix T �de-
rived from R and T� for the sample, and so it is natural to
investigate the symmetry properties of our transfer matrix.
Recently, it was established �29� using electromagnetic reci-
procity arguments that, for the supercell structures we con-
sider here, the full transfer matrix for each layer Tl, incor-
porating entries for both propagating and evanescent plane
wave orders, is symplectic Sp�2Nt ,C�, i.e.,

Tl
TSTl = S , �2�

where S has the form

S = � 0 �x

− �x 0
	 �x = �0 1

1 0
	 , �3�

and �x is the Pauli matrix of size Nt. The symplecticity is
preserved by the multiplicative property of the transfer ma-
trices and so the full transfer matrix of the slab of layers T is
also symplectic. The same proof establishes that the reduced
form of the transfer matrix, formed by truncating R and T so
they contain only propagating order channels, is also sym-
plectic.

In our numerical simulations, we use periodic boundary
conditions, with the cylinders arranged in a square �L�L�
supercell array �Fig. 1�, having a common radius of a /d
=0.3, with their refractive indices distributed uniformly
about n=3. All calculations were undertaken at the normal-
ized wavelength � /d=2.21. The associated regular photonic
crystal has band gaps in the ranges 1.778�� /d�2.137 and
2.985�� /d�3.769. Ensemble averages of 
ln g� were cal-
culated over Nr=4900 realizations, with convergence studies
demonstrating that each single realization of g has a relative
tolerance of better than 0.017%, and with the stabilization of

ln g� with increasing Nr having been established previously
�28�. To understand the effect of supercell boundary condi-
tions, we have run our codes with both periodic and antipe-
riodic boundary conditions. In the localized regime, the re-
sults are almost independent of the boundary conditions,
while in the diffusive regime, single realizations of ln g can
vary by up to 10%. The precision we achieve is sufficient for
validating the single parameter scaling and establishing the
existence of a mobility edge. In our analysis of the scaling
theory, we follow the treatment in Slevin and Ohtsuki �30�,
beginning with the renormalization group equation


ln g� = F��L1/�,�L	� , �4�

in which �L1/� is the relevant scaling function, � is the criti-
cal exponent, and � is an irrelevant scaling variable, taking

into account the finite size of the sample, with 	�0 required
for � to be regarded as irrelevant. It is possible, in general,
that more than one relevant and irrelevant scaling variable is
required to fit the data to Eq. �4�. Here, however, we restrict
ourselves to a single relevant variable ���, in accord with
single parameter scaling theory, and a single irrelevant vari-
able ���, as justified by our results. We then approximate the
scaling function �4� by a first order expansion


ln g� = F0��L1/�� + �L	F1��L1/�� �5�

and expand F0�x� and F1�x� in power series

F0�x� = 
ln g�c + x + a2x2 + ¯ + an0
xn0, �6�

F1�x� = 1 + b1x + b2x2 + ¯ + bn1
xn1, �7�

where 
ln g�c is the critical value whereby, at the critical
disorder Q=Qc, 
ln g� becomes independent of the sample
size and the localization length diverges. It is then natural to
write the scaling variables � and � in series expansions of
the dimensionless disorder q= �Qc−Q� /Qc:

� = �1q + �2q2 + ¯ + �n�
qn�, �8�

� = �0 + �1q + �2q2 + ¯ + �n�
qn�. �9�

Finally, the critical exponent � characterizes the divergence
of the localization �correlation� length 
 which, when ex-
panded about the critical point, is given by �19,30�


 =
1

��1q + �2q2 + ¯ + �n�
qn���

. �10�

In Fig. 2, we show the computed values of 
ln g� vs the
sample size L, for L�L cells, comprising L distinct layers,

TABLE I. Estimates of the critical value parameters and confi-
dence intervals.

P Qc 
ln g�c �

Values 0.234 0.449 2.817

95% CI 0.230–0.238 0.414–0.484 2.594–3.041

90% CI 0.231–0.238 0.419–0.478 2.630–3.004

80% CI 0.232–0.237 0.426–0.471 2.672–2.963

FIG. 2. �Color online� 
ln g� vs L for Q ranging from Q=0.1 to
Q=0.3 in steps of 0.01, from top to bottom. The dots are the actual
data, while the solid lines follow from the fit �5�.
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each with a supercell of size L. Each curve corresponds to
different disorder varying from Q=0.1 �top curve� to Q
=0.3 �bottom curve� in steps of 0.01. Note that for weak
disorder �Q�0.24� the conductance increases with the sys-
tem size �L�, while for strong disorder �Q�0.24� the con-
ductance decreases. At the critical disorder of Q=Qc�0.24
the conductance is independent of sample size. Such behav-
ior is characteristic of a mobility edge in 3D electronic sys-
tems and strongly suggests the existence of a mobility edge
in this 2D photonic system. We then fitted these data to the
single parameter scaling model �5� using a nonlinear regres-
sion based on the Levenberg-Marquardt method �31�, with
the results presented in Table I and in Figs. 2–6. Note that
the critical disorder does not depend on the angle of inci-
dence since it depends on conductance, which is a summa-
tion over all incoming and outgoing channels. For a supercell
of sufficient width, the calculation of the conductance
samples the entire angular space of open channels and is thus
independent of the incidence configuration.

In the regression, we set n0=3, n1=1, n�=2, and n�=0
and found 	=−4.7±0.7, confirming that � is indeed irrel-
evant. The critical exponent �=2.817±0.223 is close to the
values calculated for symplectic 2D electronic systems using

both the Ando model �=2.75±0.10 �15� and a random net-
work model �=2.88±0.15 �21�, both of which were calcu-
lated using a supercell method with periodic boundary con-
ditions. Plotting 
ln g� vs Q for different L �using the data of
Fig. 2� we should see a common intersection point at the
critical disorder Qc. However, because of the finite size of
the sample, the curves in Fig. 3�a� do not exhibit a common
intersection. We rectify this by applying the � scaling param-
eter as a correction �30�,


ln g�corr = 
ln g� − �L	F1��L1/�� , �11�

plotting the corrected data �11� in Figs. 4 and 3�b�, revealing
the expected common intersection at Qc�0.234. To demon-
strate the single parameter scaling, we plot 
ln g�corr vs L /

in Fig. 5. In this parametrization, the data distributes itself
into two distinct series,


ln g�corr = F0��L1/�� = F0��L/
�1/��  F±�L/
� , �12�

with the upper curve �F+� corresponding to the metallic �con-
ducting� regime �with q�0�, and with the lower curve �F−�
corresponding to the localized �insulating� regime �with q
�0�. Finally, in Fig. 6 we consider the � function

� =
d
ln g�corr

d ln L
, �13�

which is determined from the fit of the data in Fig. 4. Nega-
tive and positive values of � are associated with localized
and delocalized states, respectively. Note that � changes sign
at the critical value 
ln g�c�0.449 associated with the criti-
cal disorder Q=Qc. The conductance probability distribution

FIG. 3. �Color online� �a� 
ln g� vs Q for sizes L
=12,14,16,22,26,30. �b� Magnified version of 
ln g�corr �11� vs Q
for stack sizes L=12,14,16,22,26,30 in the vicinity of the
intersection.

FIG. 4. �Color online� 
ln g�corr vs Q for stack sizes L
=12,14,16,22,26,30 �data corrected to compensate for finite
sample size�.

FIG. 5. �Color online� The data of Fig. 4 
ln g�corr vs L /
. The
lower and upper branches respectively correspond to the “insulat-
ing” and “metallic” states. The dots denote data from the simula-
tion, while the solid lines are from the fit �12�.

FIG. 6. �Color online� ��g� vs 
ln g�corr showing the existence
of the mobility edge at 
ln g�corr�0.449 �solid line is the fit, and
dots are the data�.
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has also been calculated and is found to be Gaussian �see
Fig. 7�a�� in the metallic regime. At the transition, the distri-
bution p�ln g� exhibits the typical asymmetric behavior of

Fig. 7�b�, while in the localized regime, the distribution is
log normal �28�. We also undertook simulations for TE �H��
polarization. However, the scattering is now much weaker
and thus much larger systems need to be studied, requiring a
concomitant increase in computational requirements.

In conclusion, we have validated single parameter scaling
theory for disordered photonic systems in two dimensions
using a renormalization group formalism. We have found
strong numerical evidence of an Anderson transition for such
systems and we explain this in terms of the symplectic nature
of the system’s transfer matrix, noting that mobility edges for
dimension d�2 are predicted in electronic systems with spin
orbit coupling that exhibit this class of symmetry �23�. It is
interesting that the value of the critical exponent we find in
the electromagnetic case agrees to within error bars with
those from two symplectic models of electronic systems.
While the numerical evidence of an Anderson transition in
two dimensions is strong, either an analytical approach or
clear experimental results are needed to establish its exis-
tence unambiguously.
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fit calculated from the data; �b� conductance probability distribution
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